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Abstract

In this study, analytical solutions for axisymmetric transverse vibration of cylindrical shells with thickness varying

monotonically in arbitrary power form due to forces acting in the transverse direction are derived for the first time, in

terms of generalized hypergeometric function. To illustrate the use of the closed form solutions presented, free vibration

analyses of a cylindrical shell with thickness variation under simply supported and clamped ends conditions are performed.

The benchmark solutions may be used to check against numerical solutions for analysis of shells under dynamic load.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamics of cylindrical shells has been studied both numerically and experimentally by many researchers
over a long period of time owing to its wide range of applications in engineering. Pellicano [1] proposed an
analytical method based on the Sanders–Koiter theory to study linear and nonlinear vibrations of circular
cylindrical shells with different boundary conditions, and the analytical results were verified by experiments.
Other related references may be found in the well-known work of Leissa [2] and Love [3]. However, relatively
few analytical solutions available in the published literature address the effect of the thickness variations on
the vibration behavior of shells. Zhang and Xiang [4] presented the exact solutions for the vibration of circular
cylindrical shells with step-wise thickness variations in the axial direction. The torsional vibration of circular
cylindrical shells has been studied by Soni et al. [5] for varying thickness case. Radhamohan and Maith
obtained the natural frequencies and buckling loads for cylindrical shells having linearly varying thickness by
using a segmentation technique [6]. Fisher [7] obtained the analytical solutions of the transverse vibrations of
circular cylindrical shells of uniform and linear varying thickness.

In the present note the axisymmetrical free vibration of thin circular cylindrical shells with thickness varying
monotonically in arbitrary power form due to the transverse inertial force which produces transverse
vibrations is studied. Transformation of variable is introduced such that the governing equation for the free
vibration of varying thickness in power form is converted into a fourth-order generalized hypergeometric
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.03.069

ing author. Tel.: +656516 2163.

ess: cgkoh@nus.edu.sg (C.G. Koh).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.03.069
mailto:cgkoh@nus.edu.sg


ARTICLE IN PRESS

Nomenclature

x, y, and r coordinates in the longitudinal,
circumferential and normal to the surface
directions of a cylindrical shell, respec-
tively

L, L0 distances measured from the origin of the
shell to the shell ends

a radius of a cylindrical shell
t1 ¼ a/L dimensionless radius
h0 shell wall thickness which occurs at

x ¼ L

t2 ¼ h0/L dimensionless shell wall thickness
m thickness variation parameter
N̄x , N̄y and Q̄x, Q̄y normal and transverse

shearing forces in the x and y directions,
respectively

N̄xy ¼ ðN̄yxÞ in-plane shearing force
M̄x, M̄y and M̄xy bending moment and twisting

moment, respectively
ū, v̄ and w̄ displacements in the x, y and r

directions, respectively
Overbar ‘‘ – ’’ the normal and shearing forces,

bending and twisting moments, and
displacements without the overbar de-
note as dimensionless quantities. For
example, Nx is the dimensionless form
of N̄x

E modulus of elasticity
m Poisson’s ratio
p circular frequency
r mass density
nm frequency parameter
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equation. The method of Frobenius is then employed for solving the governing differential equations to arrive
at the analytical solution in terms of generalized hypergeometric function. This method has been successfully
applied by Duan et al. [8] in the investigation of the transverse vibration of thin plate with varying thickness.

2. Basic equation

Consider a circular cylindrical shell generated by rotating the shell wall thickness function h ¼ h0(x/L)
m

about the x-axis as shown in Fig. 1, where m is the thickness variation parameter. Shell wall thickness will be
varied from h0 occurring at x ¼ L to h0(L0/L)

m occurring at x ¼ L0, where L and L0 are the distances
measured from the origin of the shell to the two shell ends. Let x, y, and r be the coordinates in the
longitudinal, circumferential and normal to the surface directions of a cylindrical shell, respectively. The five
equilibrium equations for a shell surface element [2,9] are

aN̄x;x þ N̄yx;y þ pxa ¼ 0,

N̄y;y þ aN̄xy;x � Q̄y þ pya ¼ 0,

Q̄y;y þ aQ̄x;x þ N̄y � pra ¼ 0,

M̄y;y þ aM̄xy;x � aQ̄y ¼ 0,

aM̄x;x þ M̄yx;y � aQ̄x ¼ 0. (1)

Eq. (1) may be considered as the equations of motion if the inertial forces are included in the external forces,
px, py and pr, acting in the directions indicated by the subscripts. N̄x, N̄y and Q̄x, Q̄y are the normal and
transverse shearing forces in the x and y directions, respectively; N̄xy ¼ ðN̄yxÞ is the in-plane shearing force;
M̄x, M̄y and M̄xy ¼ ðM̄yxÞ are the bending moment and the twisting moment, respectively. A prime followed
by a subscript denotes a derivative with respect to the subscript. The radius of the shell, a, is measured from
the central axis to the mid surface of the shell.

For the axisymmetric case, only the inertia force pr, N̄y, M̄x, M̄y, and Q̄x remain in Eq. (1), i.e. px ¼ 0,
py ¼ 0, N̄x ¼ 0; N̄xy ¼ 0; Q̄y ¼ 0; and M̄xy ¼ 0. By dropping all derivatives with respect to y, Eq. (1) can be
reduced to

aQ̄x;x þ N̄y � pra ¼ 0,

M̄x;x � Q̄x ¼ 0. (2)
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Fig. 1. Cylindrical shell with variable wall thickness.
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Eliminating Q̄x yields

aM̄x;xx þ N̄y � pra ¼ 0. (3)

Let

ū ¼ h0uðZÞ expðiptÞ; v̄ ¼ h0vðZÞ expðiptÞ; w̄ ¼ h0wðZÞ expðiptÞ,

N̄x ¼ Eh0NxðZÞ expðiptÞ; N̄y ¼ Eh0NyðZÞ expðiptÞ,

M̄x ¼ Eh0aMxðZÞ expðiptÞ; h ¼ h0Zm; pr ¼ rh0Zmp2h0wðZÞ, (4)

where t is time, E is the modulus of elasticity, p is the circular frequency, r is the mass density, ū, v̄

and w̄ are the displacements in the x, y and r directions, respectively, and Z ¼ x/L is a dimensionless
variable.

In the context of linearly elastic response, the following force–displacement relations may be used:

Nx ¼
t2Zm

1� m2
m
t1

wþ u;Z

� �
,

Ny ¼
t2Zm

1� m2
w

t1
þ mu;Z

� �
,

Mx ¼
Z3mðt2Þ

3w;ZZ

12ð1� m2Þt1
, (5a 2 c)

in which

t1 ¼
a

L
; t2 ¼

h0

L
, (6)
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and m is Poisson’s ratio. Substituting Eqs. (5a)–(5c) into Eq. (3) yields

Mx;ZZ þ
1

t21
Ny �

t2o2Zm

t1
w ¼ 0, (7)

where o2 ¼ ðrp2L2=EÞ.

3. Closed form solutions

Since only vibration in the transverse direction is considered, we have

Nx ¼ 0. (8)

Thus, Eqs. (5a) and (5b) yield

u;Z ¼ �
m
t1

w, (9)

Ny ¼
t2
t1

Zmw. (10)

Substituting Eqs. (10) and (5c) into Eq. (7) leads to a homogeneous linear ordinary differential equation
with variable coefficients

Z2w;ZZZZ þ 6mZw;ZZZ þ 3mð3m� 1Þw;ZZ � n4
mp

4Z2�2mw ¼ 0, (11)

where frequency parameter nm is defined as n4
mp

4 ¼ ð12ð1� m2Þ=t21t
2
2Þðo

2t21 � 1Þ, therefore

o2 ¼
1

t21

t21t
2
2

12ð1� m2Þ
n4

mp
4 þ 1

� �
. (12)

A novel transformation to solve Eq. (11) is introduced, in which m can be any number except m 6¼2,
given by

r ¼
n4

mp
4Z4�2m

ð4� 2mÞ4
. (13)

Thus, Eq. (11) is transformed to a generalized hypergeometric equation:

1�
1

r

Y4
i¼1

ðWþ gi � 1Þ

( )
wðrÞ ¼ 0, (14)

where

W ¼ r
q
qr
; g1 ¼ 1; g2 ¼ 1�

1

4� 2m
; g3 ¼ 1þ

3m� 3

4� 2m
; g4 ¼ 1þ

3m� 2

4� 2m
. (15)

According to Frobenius theory, if no two values of gi are equal or differ by an integer value, the solutions of
Eq. (14) are non-logarithmic and may be written in the form [8]

w1ðrÞ ¼ r1�g1 0F3ð½ �; ½1þ g2 � g1; 1þ g3 � g1; 1þ g4 � g1�; rÞ,

w2ðrÞ ¼ r1�g2 0F3ð½ �; ½1þ g1 � g2; 1þ g3 � g2; 1þ g4 � g2�; rÞ,

w3ðrÞ ¼ r1�g3 0F3ð½ �; ½1þ g1 � g3; 1þ g2 � g3; 1þ g4 � g3�; rÞ,

w4ðrÞ ¼ r1�g4 0F3ð½ �; ½1þ g1 � g4; 1þ g2 � g4; 1þ g3 � g4�; rÞ, (16)

where 0F3ð½ �; ½1þ g2 � g1; 1þ g3 � g1; 1þ g4 � g1�; rÞ is the generalized hypergeometric function. The series
form of the function 0Fq is given by

0F qð½ �; ½b1; b2; . . . ; bq�; rÞ ¼ 1þ
X1
k¼1

rk

Pq
j¼1ðbjÞkk!

, (17)
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where ðbjÞk ¼ ðGðbj þ kÞ=GðbjÞÞ ¼ bjðbj þ 1Þ � � � ðbj þ k � 1Þ: The complete solution of Eq. (14) can be
expressed as

wðrÞ ¼
X4
i¼1

ciwiðrÞ, (18)

where ci are non-zero constants.
For certain particular values of m such as

m ¼
1

3
;
2

3
; 2þ

1

2n
; 2�

4

2nþ 3
; or 2�

3

2nþ 3
; n is an integer; (19)

two of gi are equal or differ by an integer value. There is no loss of generality in taking these as g1 and g2,
arranged with their real parts in ascending order. Under these conditions, the solution w2(r) is degenerated to
logarithmic form. The logarithmic form solutions of Eq. (14) have been studied by Duan et al. [8]. Hence, w2(r)
in logarithmic form is given as follows without derivations:

w2ðrÞ ¼ w1ðrÞ ln rþ r1�g1
X1
s¼0

C10
0s rs

Y4
i¼1

Gð1� g1 þ giÞ

Gð1� g1 þ gi þ sÞ

þ5F 0 ½1; 1; 1þ g1 � g2; 1þ g1 � g3; 1þ g1 � g4�; ½ �;
1

r

� �
1

rg1

Y4
i¼2

ðgi � g1Þ, (20)

where C10
0s ¼

P4
t¼2j0ð1� g2 þ gtÞ þ j0ðg2 � g1Þ �

P4
t¼1j0ð1� g1 þ gt þ sÞ and j0 is a polygamma function.

4. Numerical results and discussion

The variation of the frequency parameter nm with the taper (represented by the power of thickness function)
of the thickness of the shell under both simply supported and clamped ends is considered. The simply
supported condition does not permit the linear motion along the x-axis but does not hinder rotation of the
shell cross-section at the supports. It follows that

w ¼ 0; Mx ¼ 0 at Z ¼ b; 1, (21)

where b ¼ L0/L. As for the clamped condition, the linear motion and rotation along the x-axis become zero.
That is

w ¼ 0; w0Z ¼ 0 at Z ¼ b; 1. (22)

Substituting Eqs (18) and (5c) into Eqs. (21) and (22), the matrices involving the system frequencies
can be formulated for simply supported and clamped shells, respectively. The matrices are too lengthy and not
shown in this short communication. Setting the determinant of these matrices to zero yields the frequency
parameter nm.

In order to assess the validity of the results provided by the analytical approach, a finite element model
(FEM) of the shell with clamped ends is prepared using ABAQUS 6.4. The parameters for the shell are as
follows: L ¼ 1.0m, L0 ¼ 0.8m, a ¼ 1m, h0 ¼ 0.01m, E ¼ 70GPa, m ¼ 0.3, and r ¼ 2700 kg/m3. The
thickness variation parameter m is set to be 1 (linear varying thickness). The finite element model is
represented by a mesh of 400 axisymmetric solid element CAX8R (8-node biquadratic, reduced integration).
Lanczos iterative technique was adopted to compute the natural frequencies of the shell. The comparison
between the analytical and numerical results is shown in Table 1. The good agreement of less than 5%
maximum difference indicates that the correctness of proposed solutions in this paper.

The variation of the first four frequency parameters nm with the power of thickness function m for the shell
with clamped ends condition is presented in Table 2, where m is varied from �2 to 1.8 (m 6¼2 in view of Eq.
(13)) and b is set to be 0.2. It is seen that the values of the frequency parameters nm can be substantially altered
due to the variation of thickness variation parameter m. For example, the first four frequency parameters nm

for the case of linear varying thickness (m ¼ 1), i.e. 1.3692, 2.2674, 3.1708, and 4.0744, are rather smaller
than those parameters for the case of uniform thickness (m ¼ 0), i.e. 1.8820, 3.1246, 4.3749 and 5.6248.
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Table 2

First four frequency parameter nm under clamped ends condition

m 1st mode 2nd mode 3rd mode 4th mode

�2.0 3.8309 5.9022 7.9473 9.9861

�1.8 3.6027 5.5731 7.5242 9.4730

�1.6 3.3766 5.2495 7.1107 8.9732

�1.4 3.1541 4.9340 6.7096 8.4896

�1.2 2.9372 4.6293 6.3237 8.0239

�1.0 2.7283 4.3381 5.9548 7.5775

�0.8 2.5301 4.0624 5.6038 7.1505

�0.6 2.3451 3.8032 5.2710 6.7424

�0.4 2.1752 3.5609 4.9558 6.3527

�0.2 2.0209 3.3350 4.6574 5.9804

0.0 1.8820 3.1246 4.3749 5.6248

0.2 1.7571 2.9285 4.1073 5.2852

0.4 1.6448 2.7457 3.8538 4.9608

0.6 1.5434 2.5752 3.6137 4.6512

0.8 1.4518 2.4160 3.3863 4.3559

1.0 1.3692 2.2674 3.1708 4.0744

1.2 1.2949 2.1285 2.9668 3.8063

1.4 1.2288 1.9986 2.7737 3.5513

1.6 1.1702 1.8769 2.5909 3.3090

1.8 1.1183 1.7627 2.1681 3.0246

Table 1

Comparison of frequency parameter nm of the shell under clamped ends condition between FEM and proposed solutions for m ¼ 1 (linear

varying thickness)

m 1st mode 2nd mode 3rd mode 4th mode

Proposed solutions 7.1315 11.8397 16.5768 21.3127

FEM 7.1386 11.6574 16.1354 20.4568

Difference (%) 0.10 �1.56 �2.74 �4.18
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The percentage differences ðnmjm¼0 � nmjm¼1=nmjm¼0Þ � 100% in the frequency parameters are 27.25%,
27.43%, 27.52% and 27.56%, respectively. In addition, the first four frequency parameters nm for the case of
negative quadratic varying thickness (m ¼ �2) are 3.8309, 5.9022, 7.9473 and 9.9861, respectively. The
percentage differences ðnmjm¼�2 � nmjm¼0=nmjm¼�2Þ � 100% in the frequency parameters are 28.78%, 26.50%,
25.07% and 24.12%, respectively.

The first four frequency parameters nm for the shell with simply supported ends condition versus the power
of thickness function m are presented in Fig. 2, where m is varied from �1 to 1 and b is set to be 0.1. Firstly,
when m ¼ 0, nm equal to 1, 2, 3, and 4 for the first four modes respectively, therefore Eq. (12) becomes

o2 ¼
1

t21

t21t
2
2

12ð1� m2Þ
n4p4 þ 1

� �
; n is 1; 2; 3 and 4. (23)

This is consistent with the results from the shell with uniform thickness [10]. This agreement verifies the
proposed solution in the special case of uniform thickness. In addition, it can be seen in Fig. 1 that when the
power m increase from �1 to 1, the thickness of the shell keeps the same as h0 at the Z ¼ 1 while it varies from
a larger value h0Z

�1 to a smaller value h0Z at Z ¼ b. Hence, the frequency parameters nm are decreased as
reflected in Fig. 2. For example, the frequency parameters nm for the first four modes are decreased from
1.4057, 3.0369, 4.6059 and 6.1664 to 0.70153, 1.5112, 2.2459 and 2.976, respectively, as the power m increase
from �1 to 1.
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Fig. 2. Variation of first four frequency parameter nm with m.
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From Eq. (12), Fig. 2 and Table 1 it can be seen that, besides geometry parameters t1 and t2, the thickness
function m allows significant adjustment for frequency of shells. This could be useful for the optimization for
the design of shells under dynamics loads.
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